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Appearance-Based Driver 3-D Gaze Estimation
Using GRM and Mixed Loss Strategies

Taiguo Li , Yingzhi Zhang , Member, IEEE, and Quanqin Li

Abstract—Driver gaze estimation is a key technology in
advanced intelligent vehicles, and it is crucial for ensuring
road safety by monitoring driver visual attention. Previously,
attention detection through head pose or saliency map integration
only offered rudimentary estimation and was insufficient for
the advanced driver assistance systems (ADASs), which require
more precise gaze data. This work introduces an appearance-
based method for driver 3-D gaze estimation. Initially, the Swin
Transformer was used to enhance global image information
processing, which enabled accurate gaze direction prediction.
Furthermore, the method incorporates a gaze refinement module
(GRM) as a postbackbone to optimize feature mapping, thus
ensuring stable gaze direction estimation. Finally, a mixed loss
function was used to improve the accuracy. This mixed loss func-
tion combines pinball loss, mean-squared error (MSE), and bias
penalty. The experimental results demonstrated angular errors
of 3.76◦ and 10.62◦ in the MPIIGazeFace and Gaze360 gaze
estimation data sets. We inferenced the proposed method to the
driver monitoring data set (DMD), and the results demonstrate
the effectiveness of this work. Our code is publicly available at
github.com/Rocky1salady-killer/DGE-GM.

Index Terms—Driver distraction, gaze estimation, gaze refine-
ment module (GRM), Swin Transformer.

I. INTRODUCTION

THE FOCUS on traffic safety is a worldwide concern.
According to the World Health Organization’s report,

annually approximately 1.35 million people perish in traffic
accidents [1]. One of the primary causes is driver distraction,
resulting in considerable economic and casualty losses [2]. The
advancement of technology is driving deep transformations
in road traffic safety. The American society of automotive
engineers (SAEs) divides autonomous driving into six levels,
ranging from L0 to L5. It is forecasted that by 2030, the United
States, Europe, and China will have 82 million intelligent vehi-
cles of L4 or L5 level on the roads [3]. High-level autonomous
driving vehicles are anticipated to seamlessly integrate with
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human drivers, establishing a collaborative control mode [4].
In this mode, the vehicle can operate autonomously in most
scenarios. However, rapid driver intervention is still necessary
in certain emergency or abnormal situations. Continuous mon-
itoring of the driver’s condition is necessary to ensure that the
vehicle can be taken over at any time [5]. Thus, the detection
of driver distraction is crucial, both in preventing accidents in
conventional driving and in ensuring the safe integration of
emerging autonomous driving technologies [6].

The centers for disease control and prevention (CDC) [7]
extensively defines distracted driving: “The driver’s attention
is considered diverted when it moves from the driving task
to other activities.” Distractions are divided into three types:
cognitive, behavioral, and visual distractions [8]. Driver’s
decision making during driving is intimately connected with
the visual information they gather. Amidst the rapid changes in
complex traffic environments, drivers must swiftly process and
judge various external information, with their eye movements
and gaze direction often responding before their actions [9].
The driver’s gaze direction is a more profound and direct
measure of visual attention distraction [10]. In a basic scenario,
when a driver wishes to drink water, they first direct their
gaze toward the water bottle, confirm its position, and then
perform the subsequent actions of grabbing and drinking.
These sequential actions are closely linked to eye attention
and gaze direction from the outset. Accurately and promptly
estimating the driver’s gaze direction can provide crucial data
for driving assistance systems and is essential for assessing
driver visual distraction [11].

Traditional research approaches involved researchers trying
to directly link the estimation of the driver’s head posture
with distracted driving behavior. Zhao et al. [12] proposed
a method using continuous head pose estimation to be able
to identify distracted driving in real time, using computer
vision to analyze head movements. However, the detection
effect decreases under different lighting conditions or when
the driver’s face features are turned back. Concurrently, other
researchers explored by segmenting the driver’s visual focus
across various gaze zones [13]. Palazzi et al. [13] proposed a
new method for assessing driver visual attention that utilized
eye tracking and scene analysis to predict driver attentional
focus. However, the limitations of the model include its
dependence on high-quality eye-tracking data, which may be
affected by device calibration issues or individual differences
in eye movements. Although these methods provide funda-
mental estimates of driver’s gaze directions, their accuracy
does not meet the requirements of complex driver distraction
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detection systems. The novelty of this work [14] lies in its
methodological focus, exploring the impact of various methods
of analysis of eye tracking data on the conclusions drawn about
driver behavior and attention. However, the key limitations
of this method are the invasive nature of the equipment
and the dependence on the accuracy of the eye-tracking
technology, which can lead to errors. Regarding precise eye-
tracking data, head-mounted eye trackers can measure eye
movements directly but are highly inconvenient for users due
to their intrusive nature. Furthermore, eye trackers necessi-
tate laborious calibration processes for each driver and are
extremely sensitive to environmental factors. Lv et al. [15]
proposed an innovative method for improving driver gaze
prediction by incorporating a reinforced attention mechanism.
This method utilizes reinforcement learning to enhance the
accuracy of gaze prediction models, enabling more precise
anticipation of where a driver will look next. Despite its
advancements, the method faces limitations, including high
computational demands that may affect its deployment in real-
time systems. Conversely, although in-vehicle sensors offer
beneficial indirect insights into the driver’s gaze direction, their
accuracy is potentially impacted by data noise and external
interference, and increasing the uncertainty in gaze estimation.
To overcome these limitations, we introduce an innovative
appearance-based 3-D gaze estimation approach for drivers.
Differing from conventional methods, our proposed method
is nonintrusive and estimates the gaze direction by directly
analyzing the driver’s appearance. This approach can precisely
estimate the driver’s gaze direction and also employs cascading
networks and arrows for visualization. It offers a more intuitive
and distinct representation of the driver’s visual focus.

While traditional 2-D gaze estimation techniques for drivers
offer some insights in specific scenarios, they are generally
unable to fully capture the driver’s actual visual focal points in
complex driving situations [16]. Especially when dealing with
complex tasks, just using head posture or visual saliency maps
might not accurately represent the driver’s eye attention [17].
By comparison, 3-D gaze estimation methods offer more
detailed and precise gaze data, crucial for assessing the
driver’s visual attention, fatigue levels, and potential driving
hazards. In the field of assisted driving, there is still less work
on detecting the driver’s visual attention through 3-D gaze
estimation, which tends to be human 3-D gaze estimation [48],
[49], [50], [51]. Liu et al. [48] proposed a 3-D gaze esti-
mation method based on autocalibration. Although the work
tried to address the need for continuous calibration of head-
mounted devices. However, calibration is still unavoidable, and
head-mounted devices still affect the user experience. Gaze
estimation is a typical regression task, and the loss function
is very important as it affects the stability of the estimation
results, but few researchers have done some work on it.
Specifically, this research focuses on pitch and yaw angles,
as they sufficiently determine the driver’s gaze direction. The
roll angle, which describes head rotation around the gaze axis,
does not affect the gaze direction itself and is thus omitted
in our estimation. This simplification allows for accurate gaze
direction estimation without the computational overhead and
potential confusion introduced by considering roll. Hence,

this research exploratively employs a new type of 3-D gaze
estimation method that outputs these key gaze data from just
the driver’s 2-D images. This approach also provides a more
versatile and precise technological path for additional research
and practical applications.

The main contributions of our work are summarized as
follows.

1) In the area of driver distraction detection, this research
introduces an appearance-based 3-D gaze estimation
technique for drivers. The designed model provides more
accurate and stable gaze estimation results compared
to existing methods. The mapping function from eye
appearance to gaze direction can be fitted even with
rapid and large head movements by the driver, while also
significantly addressing the consumption of continuous
calibration and the experience-affecting issue of head-
mounted devices. Our method estimates robust 3-D gaze
data which is important for analyzing driver visual
attention.

2) In this work, the convolutional neural network (CNN) is
replaced by the Swin Transformer as a feature extractor
to more accurately capture global image features. To
improve the effectiveness of the representation extracted
from the backbone, we introduced the gaze refinement
module (GRM), which consists of some key compo-
nents and a specialized prediction head to output stable
gaze estimation results. Additionally, we considered
the stability of the model estimation results in driving
scenarios, so we designed a hybrid loss function that
integrates pinball loss and mean-squared error (MSE)
loss, along with an added bias penalty component.

3) The proposed model was tested on the promi-
nent and openly accessible gaze estimation data sets
MPIIGazeFace and Gaze360, with the results indicating
notable performance enhancement from our proposed
method, yielding angular errors of 3.76◦ and 10.62◦,
respectively. Furthermore, our model underwent addi-
tional validation through the driver monitoring data set
(DMD), where the driver’s gaze direction was visualized
using arrows, affirming the model’s generalization capa-
bility. In conclusion, despite the scarcity of 3-D gaze
estimation studies for drivers in this field, a comparative
analysis with other current advanced gaze estimation
models illustrates the superiority and practicability of
our approach.

II. RELATED WORK

A. Driver Visual Attention Estimation

For capturing the driver’s visual attention, several stud-
ies have concentrated on estimating gaze regions through
head direction or uncalibrated gaze angles [18], [19], [20],
[21], thereby projecting the gaze onto different areas. These
approaches are based on the hypothesis linking driver behavior
with the allocation of visual attention.

Jha et al. [18] designed a framework for estimating driver
visual attention by analyzing head posture and eye gaze.
The model, which is based on the CNN, consists of a head
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posture encoder and an eye encoder. The head posture encoder
evaluates six parameters to determine the head’s position and
orientation, transforming them into low-dimensional features.

Differing from prior studies, Kasahara et al. [19] introduced
a novel 3-D geometric learning framework. Their approach
aims to align the driver’s gaze direction with the visual
prominence of the observed scene, enhancing the correlation
between driver attention and 3-D scene semantics. It
particularly focuses on how drivers pay attention to key
elements like vanishing points, pedestrians, and traffic signals
in their driving environment. Inspired by binocular asymmetry,
Cheng et al. [21] proposed a face-based asymmetric regression
assessment network (FARE-Net) to optimize the gaze
estimation results by taking into account the differences
between the left and right eyes. Their method consists of a
face-based FAR-Net and an evaluation network (E-Net) for
learning binocular reliability.

The prediction of driver attention in dynamic driving sce-
narios is a significant research subject, with Li et al. [22]
introducing the ASIAF-Net for driver attention prediction
at both regional and object levels. ASIAF-Net consists of
three main parts: 1) attention related spatial feature encoder
(AF-Encoder); 2) self-adaptive short-temporal feature extrac-
tion module (SSFE-Module); and 3) induced aware fusion
network (IAF-Net). The AF-Encoder with a novel association
analysis cell (AAC) is built to extract contextual spatial
information.

Additionally, researchers have extensively analyzed how
various driving conditions (including different landscapes,
times, and weather conditions) impact driver attention estima-
tion. This plays a vital role in understanding the dynamics of
driver attention in real-world settings [22], [23]. Hu et al. [23]
have developed a comprehensive and innovative framework for
estimating driver attention within intelligent vehicles, leverag-
ing a unique integration of calibration-free eye gaze and scene
features. The framework meticulously extracts spatiotempo-
ral feature maps, including low-level features, static visual
saliency maps, and dynamic optical flow information from
the driving scene, alongside high-level semantic descriptions.
A gaze probability map, derived directly from the driver’s
gaze direction, is incorporated without the need for spe-
cialized eye-tracking equipment, showcasing the framework’s
calibration-free nature.

B. Driver Gaze Estimation

The precision of gaze estimation is important for ensuring
safe driving in the domain of driver attention monitoring.
Conventional gaze estimation methods typically depend on
laborious calibration processes, adding to the complexity of
system implementation and posing challenges in maintaining
calibration continuity in real driving situations [24]. Gaze
estimation accuracy is severely challenged in natural driving
environments due to the variability of the driver’s head and eye
positions, as well as the ever-changing ambient lighting and
viewpoints [25]. Thus, the development of a self-calibrating
gaze estimation method that can adapt to the driver’s natural
behaviors [26], [27] plays a crucial role in enhancing the
usability and adaptability of driver monitoring systems.

Yuan et al. [26] introduced a self-calibrating driver gaze esti-
mation technique that innovatively applies domain knowledge
of typical driver gaze patterns, eliminating the need for explicit
calibration procedures. Their method employed a gaze pattern
learning algorithm that learns from predefined gaze regions
(side view mirrors, rearview mirrors, speedometer, and center
console). The method automatically identified representative
time samples and used these instances as implicit calibration
points.

Moreover, certain research efforts have broken down the
issue of gaze angles into two components, streamlining the
calibration process and concurrently addressing variations
among individuals. These studies further uncover the problem
of individual biases in gaze estimation. Chen and Shi [27]
introduced a gaze decomposition method that decomposes
the gaze angle into a subject-independent component and a
subject-dependent bias. This innovative approach acknowl-
edges that a significant portion of estimation error arises from a
consistent bias unique to each subject. Their method indicates
that high-accuracy calibration can be achieved using a single
gaze target and head position, with improved performance
when incorporating variability in head orientation.

Following the recognition of the importance of individual
biases, a unified framework proposed by some researchers
has been implemented based on a thorough understanding
of the interplay between facial dynamics and gaze direc-
tion [28], [29], [30]. These approaches not only markedly
improve estimation accuracy but also exhibit the potential
for comprehensive driver status monitoring through detailed
analysis of pertinent facial characteristics [31]. Gou et al. [28]
proposed a unified framework employing cascade learning for
a comprehensive approach to head pose estimation, as well
as eye center detection and gaze estimation. This technique
efficiently utilizes the inherent correlation between facial land-
marks and 3-D face model parameters The main innovation of
this method lies in its ability to exploit the intricate relationship
between facial dynamics and gaze direction, paving the way
for more integrated driver monitoring systems.

Wei et al. [29] proposed a novel gaze estimation algorithm
that incorporates a facial feature extractor (FFE) with a pyra-
mid squeeze attention (PSA) mechanism to refine the accuracy
further. By focusing on the facial features surrounding the
eyes, the FFE meticulously captures the crucial data required
for precise gaze estimation. The subsequent integration of
the L2CSNet, which employs the PSA, effectively enhances
the correlation weights related to gaze estimation in these
feature areas, suppresses irrelevant weights, and extracts more
fine-grained information for a more accurate gaze direction
prediction.

III. METHODS

This work presents a novel approach for estimating driver
gaze. As shown in Fig. 1, the network architecture in this
study is designed to address key challenges in driver gaze
estimation. Current methods often struggle with the complex,
nonlinear relationship between facial appearance and gaze
direction, particularly under varying driving conditions. A
deep learning approach is employed to capture subtle facial
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Fig. 1. Pipeline of driver gaze estimation methods proposed in this work.

Fig. 2. Architecture of the backbone in the driver’s gaze estimation framework.

feature interactions more effectively than traditional methods.
The Swin Transformer is utilized as the backbone [32],
leveraging its ability to efficiently model both local and global
contextual information from driver images, which is a crucial
aspect in gaze estimation where both fine eye details and
broader facial context are equally important. Recognizing that
general feature extraction may not be optimally aligned with
the specific requirements of gaze estimation, the GRM is
introduced. This module serves as a task-specific adaptation
layer, refining features to better suit gaze estimation. To tackle
the multifaceted nature of gaze estimation errors, a mixed
loss function is implemented. This combines pinball loss for
asymmetric error penalization, MSE for general regression
accuracy, and a bias penalty term to mitigate systematic biases.
These components collectively form a comprehensive solution
aimed at improving the accuracy and reliability of driver gaze
estimation, which is critical for advanced driver assistance
systems (ADASs) and autonomous driving technologies.

The proposed method integrates several key components,
each serving a specific function in the driver gaze estima-
tion process. As illustrated in Fig. 1, the Swin Transformer

backbone acts as the primary feature extractor, efficiently
capturing both local and global contextual information from
driver images. The GRM further adapts these features for
the specific task of gaze estimation, including normalization,
nonlinear activation, and a neural network that learns task-
specific patterns. The final component comprises separate
prediction heads for gaze direction and bias, which utilize the
refined features to generate the final estimations.

Fig. 2 provides a detailed view of the Swin Transformer
backbone architecture. The process begins with patch par-
tition, which divides the input image into nonoverlapping
patches, followed by linear embedding which projects these
patches into a higher-dimensional space. The backbone con-
sists of four stages, each containing multiple Swin Transformer
Blocks. Between stages, patch merging layers reduce spatial
dimensions while increasing feature dimensions, allowing for
progressive feature refinement. As shown in Fig. 3, each
Swin Transformer block utilizes window-based and shifted
window-based multihead self-attention (W-MSA and SW-
MSA) mechanisms, along with layer normalization (LN)
and multilayer perceptron (MLP) components. This structure
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Fig. 3. Network of two Swin Transformer blocks.

enables the model to effectively capture and process complex
spatial relationships within driver images at various scales.

A. Suitable Backbone for Framework

For precise estimation of driver gaze, the backbone neces-
sitates potent representational learning abilities. Hence, in our
study, we contemplate utilizing the Swin Transformer as the
backbone of our detection framework.

In the driver gaze estimation framework, the backbone’s
architecture, as depicted in Fig. 2, begins by inputting the
image into the patch partition module for breaking down into
several 4 × 4 pixel patches [32]. Subsequently, these are
flattened along the channel axis. For an RGB image with three
channels, each 4×4 pixel patch comprises 16 pixels, each
having R, G, and B values, thus flattening to 16×3 = 48. Post
patch partition, the image shape transitions from [H, W, 3] to
[H/4, W/4, 48]. The linear embedding layer applies a linear
transformation to each pixel’s channel, altering the initial count
of 48 to a definable C value. Following this process, the image
shape is altered to [H/4, W/4, C].

Subsequently, the image passes through four stages of
processing, undergoing size changes. The linear embedding
layer is exclusive to stage 1. The subsequent three stages
comprise patch merging layers and differing quantities of Swin
Transformer blocks. Patch merging layers facilitate downsam-
pling. The Swin Transformer block, the primary structural
component, encompasses two variants: one incorporating the
W-MSA module and the other the SW-MSA module. Swin
Transformer blocks are thus stacked in pairs.

As illustrated in Fig. 3, the Swin Transformer block starts
with feeding the image into the first block, passing succes-
sively through a layer norm layer and a W-MSA module, with
a skip connection parallel to these steps [32]. The image is then

fed into another layer norm layer and an MLP module, with a
corresponding skip connection. Upon completion through the
first block, the image outputs to the second block.

The second block resembles the first in overall structure,
however, it employs shifted windows-based multihead self-
attention instead of the conventional window-based approach.
The ongoing Swin Transformer block computation is as
follows:

ẑl = W − MSA
(

LN
(

zl−1
))

+ zl−1 (1)

zl = MLP
(

LN
(

ẑl
))

+ ẑl (2)

ẑl+1 = SW − MSA
(

LN
(

zl
))

+ zl (3)

zl+1 = MLP
(

LN
(

ẑl+1
))

+ ẑl+1 (4)

where ẑl and zl signify the output features from block (S)W-
MSA and MLP modules. W-MSA and SW-MSA correspond
to multihead self-attention configurations using regular and
shifted window partitions. The Swin Transformer blocks
within the encoder’s four stages can be stacked in different
quantities. Since each Swin Transformer block processes the
image through W-MSA and SW-MSA sequentially, it com-
prises two layers. Therefore, the number of Swin Transformer
blocks stacked must be even. In our study, the number of Swin
Transformer blocks across the four stages of the backbone
defaults to {2, 2, 18, 2}.

The main working modules are W-MSA and SW-MSA.
In the Swin Transformer block, multihead self-attention is
conducted on windows, as opposed to the original MSA.
The computational load of the MSA was greatly reduced
compared to the original by using window-based settings. The
computational load of MSA is calculated using the following
formula:

�(MSA) = 4hwC2 + 2(hw)2C (5)

where � is the computation, h and w are the height and width
of the image, respectively, and C is the number of channels.
W-MSA module divides the feature map into a window with
the width and height of M. A feature map that will get
(h/M) × (w/M) windows, and then use the multiheaded
self-attention module for each window. Since the window’s
width and height are M, bring the above formula as 4(MC)2 +
2(M)4C, the final W-MSA calculation is

ϒ(W − MSA) = 4hwC2 + 2M2hwC (6)

where ϒ is the computation, h and w are the height and width
of the image, respectively, and C is the number of channels.

B. Gaze Refinement Module

The GRM is introduced to further refine the representations
extracted from the Swin Transformer to ensure that they
are properly tailored to the driver gaze estimation task. This
module encompasses four architectural components. Through
normalization, regularization, nonlinear transformation, and
specialized prediction heads, the GRM ensures that the
model’s outputs are both accurate and robust across varied
gaze estimation scenarios.
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1) Batch Normalization [33]: The activations are stabilized
through normalization, which ensures that the mean is
close to 0 and the standard deviation is close to 1. This
smoothens the optimization landscape, facilitates faster
and more stable training, and makes the network less
sensitive to the initialization of weights. Given a mini-
batch of data B = {x1, x2, . . . , xm}, batch normalization
normalizes each element based on the following equa-
tions:

μB = 1

m

m
∑

i=1

xi (7)

σ 2
B = 1

m

m
∑

i=1

(xi − μB)2 (8)

x̂i = xi − μB
√

σ 2
B + ε

(9)

where μB is the mini-batch mean, σ 2
B is the mini-batch

variance, and ε is a small constant added for numerical
stability.

2) Dropout: Dropout is a regularization technique
where [34], during training, each input unit is retained
with a probability of 1 − p and set to zero with a
probability of p. This helps in preventing overfitting
by ensuring that no single neuron or feature becomes
overly specialized to the training data, thus contributing
to better generalization for unseen data.
Mathematically, given an input vector x, dropout is
formulated as

yi = Bernoulli(1 − p) × xi

1 − p
(10)

where Bernoulli(1−p) represents a Bernoulli distribution
that takes the value 1 with probability 1 − p and 0
with probability p (indicating the neuron is dropped) and
1/1−p is the scaling factor. This ensures that the model
remains robust by preventing over-reliance on specific
neurons.

3) Dense Layer With Leaky ReLU: The layer captures
nonlinear relationships in the data using the Leaky ReLU
activation function. The nonlinearity introduced helps
the model capture complex relationships in the data. The
Leaky ReLU ensures that even neurons with negative
values have a gradient, which can prevent “dying”
neurons and ensure consistent learning [35].
The dense layer provides additional capacity to the
model, allowing it to capture intricate relationships in
the data. It is represented as

y = Wx + b (11)

where W is the weight matrix, x is the input, and b is
the bias vector. Following this transformation, the Leaky
ReLU activation function is applied:

LeakyReLU(x) =
{

x, if x > 0
δx, otherwise

(12)

where δ is a small constant, typically δ = 0.01.
This activation introduces nonlinearity while ensuring

that neurons have nonzero gradients, even for negative
inputs.

4) Separate Heads for Gaze and Bias: These heads are
responsible for making the final predictions. One pre-
dicts the gaze direction, and the other predicts the gaze
bias. By having distinct heads for gaze and bias, the
model can learn specialized representations for each
task, potentially increasing the accuracy and precision
of the predictions [36].

These dedicated prediction heads generate the gaze direction
and bias values, respectively. Formally represented as

Gaze = Wg × DenseOutput + bg (13)

Bias = Wb × DenseOutput + bb (14)

where Wg and Wb are the weight matrices for gaze and
bias prediction heads, respectively, and bg and bb are their
corresponding biases.

C. Mixed Loss Function

The primary objective of gaze estimation is not just to
accurately predict gaze directions but also to ensure that the
model’s predictions are consistent across varying conditions
and possess a level of uncertainty awareness [37]. To accom-
plish this, we employ a mixed loss function that synergistically
combines three distinct loss components: 1) the pinball loss;
2) MSE; and 3) a penalty for bias deviations.

The pinball loss, also known as quantile regression loss [38],
is instrumental in our approach for estimating the uncertainty
associated with predictions. Given a model’s predicted output,
outputo, a true target value, targeto, and an estimated variance,
varo, we compute the pinball loss for two specific quantiles,
q0.1 and q0.9, representing the lower and upper prediction
bounds, respectively. Our customized loss function is defined
as follows:

For the 10th percentile (quantile q0.1)

Lq0.1

(

outputo, targeto, varo
)

= max(q0.1 · (targeto − (outputo − varo))

(q0.1 − 1) · (targeto − (outputo − varo))). (15)

For the 90th percentile (quantile q0.9 )

Lq0.9

(

outputo, targeto, varo
)

= max(q0.9 · (targeto − (outputo + varo))

(q0.9 − 1) · (targeto − (outputo + varo))). (16)

The final loss is the mean of the two computed losses

L
(

outputo, targeto, varo
) = Lq0.1 + Lq0.9

2
(17)

where Lq is the pinball loss for the quantile q, tailored to
account for the prediction variance varo in our model. The
predicted output is represented by outputo, while targeto is the
true target value. Our model considers two quantiles, q0.1 and
q0.9, to effectively capture the lower and upper bounds of the
predicted gaze, integrating the variance varo to accommodate
the inherent uncertainty present in the gaze estimation task.
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The MSE quantifies the average squared disparities between
the predicted and actual gaze directions. For given predictions
outputo and actual values targeto, the MSE is articulated as

MSE
(

outputo, targeto
) = 1

n

n
∑

i=1

(

outputoi − targetoi

)2 (18)

where MSE denotes the MSE. outputoi is the predicted output
for the i-th sample, targetoi is the true value for the i-th sample,
and n is the number of samples.

To deter the model from generating overly biased
predictions, we introduce a penalty term that computes the
absolute difference between the output and its variance.
Mathematically, it is defined as

BiasPenalty
(

outputo, varo
) = |outputo − varo| (19)

where BiasPenalty is the penalty term for model bias, outputo
is the model’s predicted output, and varo represents the
variance associated with predictions.

The mixed loss function is a linear amalgamation of the
aforementioned loss components, governed by two hyperpa-
rameters α and β. Formally, it is represented as

MixedLoss = PinballLoss + α · MSE + β · BiasPenalty (20)

where MixedLoss denotes the overall loss. α and β are the
hyperparameters that balance the contributions of MSE and
the bias penalty, respectively.

The mixed loss function offers a holistic assessment of the
model’s predictions, taking into account both accuracy and
uncertainty. This multipronged strategy guarantees that the
model’s predictions are not only precise but also consistent
and uncertainty-aware.

IV. EXPERIMENTS

A. Data Sets

The data sets chiefly employed in this research are
Gaze360 [38], MPIIGazeFace [39], and DMD [40]. Gaze360
is a public, large-scale data set for human gaze estimation. It is
designed to enable robust 3-D gaze estimation in unconstrained
imagery. The data set consists of 238 subjects in indoor
and outdoor settings, marked with 3-D gazes in a variety
of head poses and distances, encompassing over 1.4 million
gaze samples across various environments and lighting con-
ditions. This diversity makes Gaze360 particularly valuable
for developing models that can generalize well to real-world
scenarios. MPIIGazeFace is an extensively used the human
gaze estimation data set featuring 3-D gaze data under various
environmental conditions and head poses. It comprises 45 000
images, gathered from 15 participants.

B. Training Details

The DMD data set offers a broad, varied, and thorough
approach to driver behavior monitoring. It encompasses both
real and simulated driving scenarios, covering distracted
driving and driver fatigue. DMD addresses the need for
multifaceted DMDs, enhancing the scope of driver distraction
detection.

Fig. 4. Examples of presentation from the Gaze 360 data set.

Fig. 5. Examples of presentation from the MPIIGazeFace data set.

The Gaze360 and MPIIGazeFace data sets are employed for
training and testing the model to ensure it accurately learns to
gaze directions across different scenarios and head poses. The
DMD data set is used to verify the model’s generalization in
real-world settings and to visualize its inference outcomes on
the DMD data set. Following the original data set partitioning
of Gaze360, we used 86 000 samples as the training set
and 16 031 as the test set. The MPIIGazeFace data set
does not have official partitioning requirements and includes
gaze data from 15 different individuals, with 3000 samples
each. We utilize the leave-one-person-out (LOPO) strategy for
training and testing [41], a cross-validation approach where
one participant’s data serves as the test set and the remaining
participants’ data as the training set.

This article uses the experimental environment configuration
in Table I to guarantee the effectiveness of model training and
testing.

For the hardware and software configuration, we employed
an AMD EPYC 7453 processor with 28 cores, along with an
NVIDIA RTX 4090 GPU featuring 24 G of VRAM. Regarding
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TABLE I
HARDWARE AND SOFTWARE CONFIGURATION

the Gaze360 data set, the Adam optimizer was deployed,
setting epochs at 100, batch size at 80, a base learning rate
of 0.0001, and maintaining weight decay at 1. With the
MPIIGazeFace data set, we set epochs to 40, batch size to 80,
and a learning rate of 0.00001, utilizing the AdamW optimizer.
The learning rate scheduler was ReduceLROnPlateau, reduc-
ing the learning rate by a factor of 0.1 when the validation
loss stopped decreasing, with a patience of 10 epochs.

C. Gaze Estimation Metrics

For gaze estimation studies, angular error is typically
employed as the main metric to directly represent the discrep-
ancy between the predicted and actual gaze directions of the
model, offering a clear indication of the model’s accuracy and
performance. In this work, the Gaze360 and MPIIGazeFace
data sets, annotated with the real gaze directions of subjects
using specialized eye-tracking devices, contain labels with
pitch and yaw information. Pitch and yaw refer to the angles of
orientation or rotation of an object in 3-D space [42]. Pitch is
the angle of rotation around the X-axis, indicating vertical tilt,
while yaw is the angle of rotation around the Y-axis, indicating
horizontal rotation. Pitch and yaw are instrumental in locating
an individual’s gaze direction in gaze estimation [17]

pitch = arctan

(

y

z

)

(21)

yaw = arctan

(

x

z

)

(22)

where x, y, and z are the coordinates of the 3-D vector from
the center of the eye to the focal point. The arc tan function
yields the angle associated with these coordinates.

The process for calculating angular error involves compar-
ing the predicted gaze direction with the actual gaze direction.
Initially, the 2-D gaze direction is transformed into a unit
vector in 3-D space, as illustrated in the following formula:

x = −cos(pitch) · sin(yaw) (23)

y = −sin(pitch) (24)

z = −cos(pitch) · cos(yaw) (25)

where x, y, and z denote the unit vector coordinates in 3-D
space. Pitch and yaw refer to the angles of gaze direction in
2-D space. The sin function calculates the sine of the given
angle, while the cos function computes its cosine.

Once the actual and estimated gaze vectors are calculated,
the angular error is determined using the following calculation:

TABLE II
COMPARITION OF ACTIVATION FUNCTIONS ON GAZE360 DATA SET

Angular Error = arccos

(

PV · GTV

||PV|| · ||GTV||
)

×
(

180

π

)

(26)

where PV represents the predicted gaze vector and GTV is the
actual gaze vector. The magnitudes of the vectors are ||PV||
and ||GTV||. The arc cos function, the inverse of the cosine,
calculates the angle from the cosine value. This is followed by
converting the radians to degrees. The process of converting
radians to degrees is realized by (180/π).

D. Comparison of Results on Gaze360 and MPIIGazeFace

In order to explore the effect of the two activation functions,
Leaky ReLu and ReLu on the GRM module, we performed
a simple ablation experiment on the Gaze360 data set. The
comparison results are shown in Table II.

Leaky ReLU introduces a small, positive slope in the
nonactive phase of the neurons, which ensures a continuous
flow of gradients. This attribute is particularly beneficial for
maintaining gradient propagation during training, thus poten-
tially enhancing learning efficiency and model performance.
Our experimental results on the Gaze360 data set demonstrate
that models utilizing Leaky ReLU achieve a lower mean
angular error compared to those using ReLU, with error rates
of 10.68◦. In the GRM module, Leaky ReLU was chosen as
the activation function over ReLU. It is notable that among
the hyperparameter settings of the hybrid loss function, we set
α and β to 0.8 and 0.1 as default.

This experiment was designed to systematically explore
the performance impact of these parameters within specified
ranges. We aim to evaluate the efficacy of different com-
binations of hyperparameters (α and β) in the mixed loss
function to optimize the estimation of driver gaze direction.
The range for α was chosen between 0.6 and 0.9 based on
preliminary tests that indicated this interval provided the best
balance between minimizing error and avoiding overfitting.
For β, the range was set between 0.01 and 0.15 to effectively
penalize minor deviations without disproportionately affecting
the overall loss, ensuring that the penalties applied were
stringent but fair. The experimental results are shown in
Table III.

The results from our systematic hyperparameter tuning
reveal the relationship: the performance of the model varies
significantly with changes in α and β, demonstrating their
critical role in the mixed loss function. Notably, combinations
around α = 0.6 and β = 0.05 yielded the best results,
achieving the lowest angular error of 10.62◦. We take the
model that results in 10.62◦ as the best model in this
work. This experiment underscores the importance of careful
hyperparameter selection and its direct impact on model
performance. Our findings support the use of our mixed loss
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TABLE III
IMPACT OF HYPERPARAMETERS ADJUSTMENTS FOR DRIVER GAZE

ESTIMATION ACCURACY ON GAZE360 DATA SET

function as a robust approach to enhancing gaze estimation
accuracy, providing a solid foundation for further refinements.

This section’s experiments aim to verify the advancement of
the methodologies presented in this study using the Gaze360
and MPIIGazeFace data sets. First, we performed ablation
experiments on the Gaze360 data set. The first model is
Gaze360, which is an advanced method proposed by the
official team of the Gaze360 data set. The model uses ResNet
for the backbone and pinball loss for the loss function. The
second model is ViT [38], the loss still uses the original
pinball loss. We started experimenting with using Transformer
instead of cnn for feature extraction and also proved its
effectiveness. For the third model, we used a transformed
version of Transformer. Swin Transformer will be designed to
be more suitable for computer vision tasks. SwinT+GRM and
SwinT+Mixed Loss are based on the Swin Transformer using
our proposed GRM and mixed loss functions. It can be seen
from the table that both our proposed GRM and mixed loss
give a positive impact.

In these experiments, we followed the official training set-
tings of Gaze360, so the epoch of the Gaze360 model was 60.
The remaining five models, all of which use transformers as
backbones and are optimized for better feature learning, had
epochs set to 100. Specific experimental results are shown in
Table IV.

The initial Gaze360 model demonstrated an angular error of
11.04◦ in the Gaze360 data set. The performance of the model
received a small improvement after using the base vision
transformer as the backbone. The mean angular error of the
ViT model was 10.87◦, which indicates that the transformer’s
feature extraction is more effective in the gaze estimation task.
The purpose of this improvement is to allow the model to
better capture the subtle features of the eye. To further extend
this advantage, we used the Swin Transformer as a backbone,

and the SwinT model also obtained a good result. The GRM
is designed as a small postbackbone, aiming to optimize the
feature mapping of the backbone. Therefore, SwinT+GRM
achieved a result of 10.72◦, which also proves this point. In
addition, driver gaze estimation is actually a regression task,
which is different from the classification task where the loss
function plays an important role during the training process
and it greatly affects the performance of the model. However,
as we can see from the table, the angular error is also lower
in the models trained with the mixed loss function.

We would like to take a larger view of the ablation
experiments and analyze the impact of these improvements, we
calculated the median angular error, interquartile range (IQR)
of angular error, and root mean-square error (RMSE) of the
model. Their visualization results are shown in Fig. 6, in order
of IQR of angular error, median angular error, and RMSE.
From the visualization results, it can be clearly observed
that the angular error values are gradually decreasing after
the model is improved one by one. Comprehensively, we
demonstrate that we proposed each point to bring effective
improvement to the gaze estimation.

The test set of Gaze360 contains 16 031 samples, which we
divided into groups of 400 to compute the average angular
error per group. The final group comprised the remaining
31 samples. This strategy was employed to compare the
baseline model (the baseline model refers to the Gaze360)
and ours. The final test results, presented in Fig. 7, reveal that
in 41 sample groups, the ours demonstrated a lower average
angular error than the original, covering 71% of the groups.
From another angle, this illustrates that the method proposed
in this study is capable of correcting major deviations and
reducing overall angular error, thereby enhancing the accuracy
of driver gaze estimation.

In addition, we validated the method proposed in this article
on another important gaze data set, MPIIGazeFace. While
validating our method, we compared it to the FullFace [39] (in
this section of the experiments the baseline model refers to the
to the FullFace) method proposed by the MPIIGazeFace data
set team. Since the MPIIGazeFace officials did not provide a
data set partitioning strategy, we tested according to the LOPO
strategy. The MPIIGazeFace data set contains face images
and gaze data of 15 people. Each person has 3000 samples,
including image and gaze data, 15 people are defined as labels
0–14, and the test results are the mean angular errors on labels
0 to 14. Fig. 8 shows the test results of the FullFace model
and our model on labels 0–14 of the MPIIGazeFace data set.

The baseline model achieved an average angular error of
4.93◦, while the method proposed in this article resulted in
an average angular error of 3.76◦. The results showed that
the method proposed in this work, compared to the FullFace
method, consistently maintains a lower angular error for most
labels. Specifically, for labels like 05, the original method had
an angular error of 5.86◦, while our method achieved 3.71◦.
For label 09, the original method showed an error of 5.31◦,
where as our method resulted in 3.16◦. In the test results for
label 14, the original method had a substantial angular error
of 7.68◦, which our method significantly improved, reducing
it to 5.07◦.
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TABLE IV
ABLATION EXPERIMENTS RESULTS ON GAZE360 DATA SET

Fig. 6. Ablation experiments results on Gaze360. (a) Comparison of different models on IQR of angular error. (b) Comparison of different models on median
angular error. (c) Comparison of different models on RMSE.

Fig. 7. Performance of the baseline model and ours on 41 sample groups of Gaze360.

The driver gaze estimation task is a typical regression
task that requires the model to estimate specific driver gaze
information. Among the test results, the closer the model
estimates pitch and yaw to the ground truth, the better the
estimation performance of the model. Therefore, we performed
a comprehensive regression analysis to compare the baseline
model with our model to get a wide range of comparisons. We
selected three labels, label 0, label 6, and label 12. In Fig. 8,
we can observe that the difference between the performance
of the baseline model and ours on label 0 is relatively small,
and the difference in the performance of label 6 is moderate,
but the difference in the performance of label 12 is huge.

This analysis aims to evaluate the accuracy of the model in
estimating the direction of the driver’s gaze. The regression
charts show the correlation between the model’s estimated
pitch and yaw values and the ground truth. In these diagrams,
each dot signifies a sample; the horizontal axis reflects the

ground truth values, and the vertical axis indicates the model’s
predicted values. In an ideal scenario, if the model predictions
are entirely accurate, all points would align closely along the
line of y = x.

The regression line visually represents the relationship
between the predicted values and actual values. It was noted
that for pitch and yaw angles, there is a significant positive
correlation between predicted and actual values, demonstrating
our model’s effectiveness in capturing gaze direction trends.
Especially notable is the our model’s robust approximation
performance at extreme pitch and yaw values. This aspect
is crucial in gaze estimation, as it pertains to the precise
identification of different angles and orientations.

From the visualization result in Fig. 9, it is easy to observe
that the distribution of the samples of the baseline model on
the three labels is scattered, although the overall distribution of
the samples is along the line of the ground truth. In particular,
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Fig. 8. Mountain peak map of the baseline model and ours on MPIIGazeFace.

Fig. 9. Visualization of the regression analysis of our model on MPIIGazeFace. Left: denotes the regression analysis of baseline on pitch and yaw. Right:
denotes the regression analysis of our method on pitch and yaw. (a) Label 0 of MPIIGazeFace. (b) Label 6 of MPIIGazeFace. (c) Label 12 of MPIIGazeFace.

in the yaw regression plot, many samples are far from the red
line. On the other hand, the overall situation of our model
on the three labels is better than that of the baseline, and the
distribution of the samples becomes more compact and closer
to the red line. Meanwhile, the baseline model has a lot of
scattered samples in the bottom plot of the yaw regression
plot, but our model improves this situation to a great extent.

E. Validation on DMD Data Set

To verify the generalizability of the method proposed in this
article, we tested it using the DMD data set, which includes

distracted driver behavior in both real-world and simulator
scenarios. We selected videos from real driving scenarios,
specifically those captured with RGB cameras focused on the
driver’s head position. Each video contains instances of normal
driving behavior and distracted behavior, including talking to
passengers, adjusting the radio, drinking water, etc. We chose
videos of six different subjects. After processing with ours,
the videos were segmented into frames for analyzing gaze
estimation results from various angles and subjects.

Notably, our method can directly estimate the driver’s 3-D
gaze direction from their appearance, which is crucial for
gaze data. However, in 2-D images or videos, we rely on
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Fig. 10. Visualization of driver gaze estimation.

arrows for visualization. Thus, the direction of the arrows in
the visualization represents the direction of the driver’s gaze.
For example, if the driver is looking forward, the arrow may
appear as a point or it may be shortened, indicating that the
driver is looking forward.

The specific gaze estimation visualization results are shown
in Fig. 10. It is clear from the figure that our model’s gaze
estimation is quite accurate, whether the driver is driving
normally or distracted. This demonstrates that although our
method was trained on the general gaze estimation data sets,
it has strong generalizability in real driving scenarios. For
example, the fifth driver had just finished drinking water,
focusing their attention on the water bottle, and our model
accurately estimated the driver’s line of sight. Additionally,
considering various driver conditions, we specifically selected
a video of a driver wearing glasses for validation. Wearing
glasses poses additional challenges for appearance-based gaze
estimation methods, especially due to reflections from the
glasses, but our model still performs well in terms of
generalizability.

Additionally, validation of the proposed method was con-
ducted using driver traveling video footage from infrared
cameras under dark night conditions. Furthermore, weak
light situations caused by varying times of day and weather

conditions, such as evening or overcast days, were also
considered to assess the method’s performance across a range
of challenging visibility scenarios.

The test results from the infrared camera video demon-
strated relatively accurate driver gaze estimation overall. The
infrared camera effectively captured the driver’s gaze char-
acteristics at night, maintaining good eye movement detail.
Consequently, the proposed method still achieved good esti-
mation results under these conditions. For weak light video
tests, footage captured under extremely low light conditions
was utilized, particularly focusing on environments within the
driver’s cab where illumination was severely limited. This
increased the validation difficulty, with periods where the
human eye was also unable to discern the driver’s line of sight.
Despite these challenges, the method performed robustly.
While there were instances of lost or biased estimation results
for brief durations, the overall estimation accuracy exceeded
initial expectations.

F. Comparison With Related Works

In order to verify the detection capabilities of the method
presented in this study, a comparison was made between
our optimally performing ours and earlier advanced SOTA
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TABLE V
COMPARISON RESULTS WITH DIFFERENT MODELS ON THE MPIIGAZEFACE AND GAZE360 DATA SETS

models, using the Gaze360 and MPIIGazeFace data sets.
Given the scarcity of gaze estimation research specifically
directed at driver attention estimation, our method was
contrasted with previously established general gaze estima-
tion techniques. Detailed comparative results are depicted in
Table V.

In the table, the ours denotes the approach introduced in this
study. The Gaze360 and Fullface methods were developed by
the teams of the Gaze360 and MPIIGazeFace data sets, respec-
tively, and were used as baseline models in Section III-D of
the experiment. Mnist and GazeNet [43] are seminal works in
the early phase of gaze estimation, employing CNN networks
as backbones, with Mnist simply using stacked CNNs. As
a result, Mnist and GazeNet exhibited the highest angular
errors, yet they significantly advanced the field of appearance-
based gaze estimation. Innovations and improvements on CNN
networks were made by later researchers.

GazeTR-Pure [44], relying solely on transformers as the
main network, lacks supplemental network designs. This
method, with suboptimal feature extraction and feature map-
ping handling, only managed to attain results of 4.74◦ and
13.58◦. GazeTR-Hybrid, integrating ResNet and using CNNs
for initial feature extraction before processing feature map-
pings with ViT, achieved results of 4.00◦ and 10.62◦. In
contrast, the method introduced in this article, based entirely
on Swin Transformer for feature extraction, fully exploits the
benefits of transformers. Additionally, it incorporates extra
network structures to effectively manage feature mappings.
The mixed loss function design further improves the model’s
generalizability, surpassing GazeTR-Hybrid in cross-data set
performance. Our method secured a result of 10.62◦ on the
Gaze360 data set and excelled on the MPIIGazeFace data set
with a mean angular error of 3.76◦.

V. CONCLUSION

In the realm of driver visual attention detection research, this
study introduces an appearance-based method for estimating
a driver’s 3-D gaze. This approach substantially enhances the
precision and efficiency of driver attention state monitoring
in intricate driving environments. A new framework has been
devised to improve the driver’s 3-D gaze estimation and to

augment the adaptability and robustness of gaze estimation
within driving contexts.

1) Utilizing Swin Transformer as the backbone facilitates
more accurate capturing and processing of both local and
global information within image data, thereby enabling
the model to swiftly and precisely predict the driver’s
gaze direction.

2) GRM is introduced, leveraging a fusion strategy for
spatial and temporal features, which bolsters the con-
tinuity of gaze estimation across successive frames
and markedly enhances the estimation’s accuracy and
stability.

3) A mixed loss function with an integrated weight design
has been formulated. This compound loss function
amalgamates pinball loss with MSE loss, supplemented
by a bias penalty term, offering comprehensive error
feedback to the model.

In future work, we will explore the following two aspects.
1) We will prioritize enhancing our model’s adaptability

to diverse environmental conditions, particularly varying
lighting scenarios encountered in real-world driving. We
plan to develop a dynamic adaptation mechanism that
can adjust the model’s parameters in real-time based
on input data characteristics. This will involve imple-
menting a reinforcement learning algorithm capable
of swiftly adapting to changing environmental condi-
tions, including different lighting, nighttime driving, and
infrared camera inputs. We plan to expand the training
data set to encompass a broader range of lighting
conditions and explore light-invariant feature extrac-
tion techniques to improve robustness across different
scenarios.

2) Additionally, considering the reduction of model com-
plexity and the edge computational resource limitations.
Our main approach will be to explore knowledge distil-
lation techniques to create a more efficient model. This
process aims to significantly reduce the model’s param-
eters and computational requirements while maintaining
its accuracy. We will investigate methods to identify and
eliminate redundant components, streamline the archi-
tecture, and compress the model without compromising
its performance.
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