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Abstract—Driver distraction causes a significant number of
traffic accidents every year, resulting in economic losses and casu-
alties. Currently, the level of automation in commercial vehicles is
far from completely unmanned, and drivers still play an impor-
tant role in operating and controlling the vehicle. Therefore,
driver distraction behavior detection is crucial for road safety.
Presently, driver distraction detection primarily relies on tra-
ditional convolutional neural networks (CNNs) and supervised
learning methods. However, there are still challenges, such as the
high cost of labeled data sets, limited ability to capture high-level
semantic information, and weak generalization performance. In
order to solve these problems, this article proposes a new self-
supervised learning method based on masked image modeling
(MIM) for driver distraction behavior detection. First, a self-
supervised learning framework for MIM is introduced to solve
the serious human and material consumption issues caused by
data set labeling. Second, the Swin Transformer is employed as
an encoder. Performance is enhanced by reconfiguring the Swin
Transformer block and adjusting the distribution of the number
of window multihead self-attention (W-MSA) and shifted W-MSA
(SW-MSA) detection heads across all stages, which leads to model
more lightening. Finally, various data augmentation strategies are
used along with the best random masking strategy to strengthen
the model’s recognition and generalization ability. Test results on
a large-scale driver distraction behavior data set show that the
self-supervised learning method proposed in this article achieves
an accuracy of 99.60%, approximating the excellent performance
of advanced supervised learning methods. Our code is publicly
available at github.com/Rocky1salady-killer/SL-DDBD.

Index Terms—Driver distraction, masked image modeling
(MIM), self-supervised learning, vision transformer (ViT).

I. INTRODUCTION

DRIVER behavior and decision control of vehicles are
the main factors affecting safe driving. According to a

report published by the World Health Organization (WHO),
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approximately 1.35 million people worldwide are killed in
traffic accidents each year. Between 20 and 50 million people
are injured and become disabled because of traffic acci-
dents [1]. Studies also indicate that driver distractions are one
of the important causes of road traffic accidents. Additionally,
according to data from the National Highway Traffic Safety
Administration (NHTSA) [2], in USA, driver distractions con-
tributed to 3142 traffic accidents in 2019. The American
Society of Automotive Engineers (SAEs) divides autonomous
driving into six levels, ranging from L0 to L5. By 2030,
USA, Europe, and China will have 80 million L4/L5 intelligent
vehicles. Although autonomous driving technology has made
impressive progress, the control of vehicles by autonomous
driving is still immature [3]. In the autonomous driving tests
conducted by Uber, 37 traffic accidents were related to driver
distraction. The driver’s distracting behavior caused the vehi-
cle to not take control in emergency situations and implement
emergency remedial actions in a timely manner [4]. Therefore,
whether it is autonomous driving or manual driving, the driver
needs to remain focused during the vehicle’s journey. The
driver’s state is particularly important, and an efficient and
accurate driver distraction detection system is an important
research method for achieving traffic safety [5]. Driver dis-
traction detection will be integrated into Advanced Driver
Assistance Systems (ADASs), analyzing the driver’s actions
and behavior to predict unsafe distraction operations [6]. When
the driver’s distraction is detected, the vehicle dashboard dis-
plays a prompt message, emits a sound or lowers the windows
to alert the driver. The vehicle control priority can be temporar-
ily adjusted to initiate braking and avoid risks [7]. In previous
surveys, with the help of such precise driver distraction detec-
tion systems, the likelihood of vehicle accidents on the road
can be reduced by 10% to 20% [8].

The NHTSA defines driver distraction as “any activity that
diverts a driver’s attention away from the primary task of driv-
ing.” The Centers for Disease Control and Prevention (CDC)
also defines distracted driving more broadly [9]. When a
driver’s attention is diverted from the driving task to another
activity, their attention is considered to be distracted. Cognitive
distraction, behavioral distraction, and visual distraction are
three typical types of driver distraction [10]. The driver is the
primary decision maker and controller of the vehicle [11], so
behavior distractions can greatly impact normal driving and
easily result in traffic accidents. In recent years, the devel-
opment of in-vehicle information system (IVIS) has made
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the infotainment and communication functions in vehicles
smoother and visually rich, further attracting the driver’s atten-
tion [12]. On the other hand, daily life also requires people to
have a great need for communication with their phones, and
some drivers even need to frequently answer calls and send
texts while driving [13]. These factors have also caused the
driver’s focus to become more and more dispersed.

Among the methods for driver distraction detection,
researchers commonly use methods, such as physiological
signals [14], [15], [16], vehicle information [17], [18], [19],
and computer vision [20], [21], [22]. Most physiological sig-
nal detection methods have high-hardware costs, and invasive
physiological sensing sensors often affect the driving expe-
rience of drivers [23]. Methods based on vehicle information
also have certain limitations. Hardware failures of vehicles and
sensors, as well as external interference, can result in inac-
curate information collection, affecting the accuracy of the
system [24]. These methods also require extensive data pro-
cessing and advanced algorithm support [25]. To address these
issues, researchers have gradually shifted their focus to com-
puter vision methods [26]. Computer vision-based techniques
for detecting driver distraction are nonintrusive, thus they do
not affect the normal driving of drivers, and they are not as
inaccurate as vehicle information methods due to information
errors [27]. However, most researchers primarily adopt super-
vised learning methods and traditional convolutional neural
network (CNN) models. By surveying the research work in
the field of driver distraction behavior detection, three existing
challenges can be inferred.

1) The strong dependence on labeled data sets for driver
distraction behavior detection based on supervised learn-
ing is a major drawback. Supervised learning models
require a large amount of labeled data for training, which
significantly increases the cost of training. Additionally,
labeling the data set requires a significant amount of
manpower and resources. Furthermore, the complexity
of real-world driving scenarios makes it difficult to accu-
rately label data, increasing the difficulty and cost of
creating a labeled distraction driving data set.

2) The traditional CNN-based driver distraction behavior
detection model is inefficient in feature extraction and
has limited ability to capture overall image information.
CNN models only stack convolution and pooling opera-
tions. As a result, it is inefficient in capturing and repre-
senting long-term dependencies in the data. Additionally,
CNN tend to focus on low-level image features, while
the task of detecting driver behavior requires better
control of global information. In images of driver dis-
tractions, basic visual pixels are correlated into objects,
and the spatial relationships between objects form scene
information. In such a visual detection task that requires
behavior judgment, mastering high-level visual semantic
information is more important.

3) Supervised learning models based on CNN have limited
capability to learn representations and show an average
generalization ability. Moreover, they are not effective
at focusing attention on crucial regions to detect dis-
tractions. Furthermore, their dependence on labeled data

sets decreases their ability to generalize and transfer to
novel tasks. This makes it challenging to ensure accu-
rate recognition in more intricate and diverse driving
scenarios.

Due to the effectiveness of prediction-based self-supervised
learning in computer vision tasks, this article explores the
application of the masked image modeling (MIM) self-
supervised learning framework in the field of driver distraction
behavior detection Instead of using traditional supervised
learning for model training and learning, we proposed a
combined approach of pretraining and transfer learning. This
approach effectively addressed the low generalization and
substantial human consumption of labeled data in existing
supervised learning methods. Instead of using CNNs, the Swin
Transformer [28] is used as the encoder in the framework,
taking advantage of the MSA mechanism to overcome the
insufficient global feature-capturing ability of existing CNN
models. A large and high-dimensional classification data set
is used for pretraining, which provides a strong foundation
for model representation learning and also makes the trans-
ferred model more robust and capable of better generalization.
This will lead to better adaptability for recognition in various
driving scenarios.

The main contributions of our work are summarized as
follows.

1) In order to address the high-research cost and consump-
tion issues associated with current supervised learning
methods, we introduce a self-supervised learning method
based on MIM for the detection of driver distraction
behavior, named SL-DDBD. This will alleviate the time
and effort consumption of data labeling. Meanwhile,
through transfer learning, the model becomes more adapt-
able in downstream task detection scenarios, compared
to the original supervised model, it has more effective
feature attention and strong generalization ability.

2) In this work, we employ the high-performing Swin
Transformer as the encoder for the self-supervised learn-
ing framework. In the transfer learning process, we
consider the depth of the Swin Transformer structure
and its relationship with the application scenario. Taking
into account the features of the driver distraction detec-
tion task, the number of Swin Transformer blocks in
stage 3 of the encoder structure is reduced to effec-
tively decrease the computational cost and parameters
of the massive encoder structure. At the same time,
in order to balance the computation of the MSA [29]
mechanism module and the improvement of the detec-
tion performance, the number of heads for W-MSA and
SW-MSA [28] detection in each stage is redistributed.
This adjustment alleviates the computational redundancy
of the encoder in more detail while providing better
recognition for driver distraction behavior detection.

3) In the model training, the best masking strategy was
applied to improve the detection performance, and the
proposed data augmentation strategies in this article
were used for learning and training. Through experi-
ments, a masking strategy with patch size of 64 and ratio
of 0.5 was selected, which resulted in a more accurate
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recognition performance. A multistrategy data augmen-
tation approach was introduced in this work, including
color jitter, motion blur, Gaussian noise, Mixup [30],
and Cutmix [31], to better simulate a more diverse and
realistic driving scenario, and improve the diversity of
images. This enhances the robustness and generalization
ability of the model.

4) This article compares the performance of self-supervised
learning models and supervised learning models on
the same data set and training configuration through
visual comparison. The results further validate that self-
supervised models are better at capturing high-level
semantic information and have more focused feature
attention on critical discrimination regions. The work
also compares its results with the state-of-the-art super-
vised and unsupervised learning methods in driver dis-
traction behavior detection, demonstrating the advanced
and feasibility of the proposed method.

II. RELATED WORK

In recent years, there has been significant progress in
related research fields, such as CNN [21], [32], [33],
[34], attention mechanism [35], [36], [37], knowledge distilla-
tion [38], [39], [40], and Transformer [41]. Depending on the
advances in these related fields, researchers have combined
these methods with research areas. This has led to a wide range
of developments in driver distraction behavior detection.

A. Driver Distraction Detection

Driver distraction detection is a hot topic of ADAS. Many
traditional methods detect driver distraction by integrating
CNN or graph neural network (GNN) models and have
achieved good results. Hu et al. [32] proposed MVCNet, which
processes information from three visual contents, including
texture features, and incorporates GNN and CNN, optical
flow, and semantic segmentation information. They also cre-
ated a new semantic attention module that is integrated into
both the CNN and graph attention network (GAT) branches.
The multibranch model decodes the integrated features to
finally generate the driver’s gaze attention map. Different
from previous work, Xing et al. [33] designed a system
that can simultaneously recognize a driver’s body activities
and mental state. The system is based on a framework of
deep encoders and decoders. The encoder is designed based
on CNN to extract effective spatial information from driv-
ing activity videos, while the encoder is designed using a
fully connected network and LSTM-based RNN for estimating
different driving states.

The areas of computer vision have extensively used attention
mechanisms, which have improved the overall performance
of networks and greatly helped with feature extraction and
classification. Huang et al. designed a deep 3-D network
(DhRN-AMED) for driver distraction detection. They inserted
the attention mechanism as a nonlinear transform layer into
the residual network with a soft threshold to extract features
related to driver behavior. Li et al. [36] used an object detec-
tion method to implement recognition of driver behavior and

proposed an AB-DLM network model for driver distraction
detection. They stacked SE attention mechanism module in
the architecture and employed bi-directional feature pyramid
networks (BiFPNs) instead of the original path aggregation
network (PANet) as a new multiscale fusion network.

On the other hand, the lightweight of driver distraction
detection model is very important for deployment to mobile
devices. Some researchers have shifted their focus to knowl-
edge distillation. Liu et al. [38] created a high-performance
teacher network. Knowledge distillation was then used to
direct the student network’s learning process after gradually
enhancing CNN’s robustness to illumination shifts from shal-
low to deep layers. The distilled knowledge is transferred
from the teacher network to the student network, resulting
in a student network with 2.03M parameters. This is a pow-
erful method for lightweight the driver behavior recognition
model. Transformer is also gradually growing in the com-
puter vision field. However, most researchers have not yet
done much work in driver behavior detection. Wang et al. [41]
proposed a detection model that integrates both CNN and
Transformer architecture, incorporating specific enhancements
to the Transformer structure for better performance. The orig-
inal multilayer perceptron (MLP) module is replaced with a
convolution module to reduce the number of model parameters
and improve detection speed. A label-smoothed loss function
is designed and applied to the model learning.

B. Self-Supervised Learning for Masked Image Modeling

Initial study and experimentation on self-supervised learning
was conducted in the area of natural language process-
ing before gradually expanding to computer vision. [42].
Nowadays, self-supervised learning using MIM has slowly
gained attention [43], [44], [45], [46], [47].

Bidirectional encoder representation from image
Transformers (BEiT) [43] is a pioneering work that transfers
the BERT-style pretraining method to the visual domain and
introduces the concept of MIM pretraining, making important
contributions to the field of self-supervised learning. BEiT
first annotates the original image and randomly masks image
blocks, feeding the masked image into the encoder, with the
main pretraining goal being to recover the masked image
blocks based on the unmasked ones. Masked autoencoders
(MAEs) proposed by He et al. [44] is a highly influential
work that drives the development of MIM self-supervised
learning. MAE compared to BEiT, advocates a simpler
training logic. It first proposed random masking of images
and directly reconstructed masked image blocks for training.
Adopted an asymmetric structure of encoder–decoder, where
the encoder only calculated nonmasked image blocks and
used a lightweight decoder design. Soon after MAE was
proposed, Xie et al. [45] proposed a simpler mask learning
framework. Regressing to a more original and simple design,
including random masking, regressing RGB pixel values,
and directly using a single linear prediction head. A simple
framework for MIM (SimMIM) also achieved good results,
achieving a top accuracy of 87.1 on ImageNet-1k. Later,
Chen et al. [46] noticed some shortcomings in previous
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work, such as a focus on semantic learning in image center
blocks and neglect of edge regions, which also made context
autoencoder (CAE)’s contribution one of the models not
only focus on the center area of the image. Second, CAE
splits representation learning and front-end tasks, making the
encoder more focused on representation learning.

The UDL model proposed by Li et al. [48] used a traditional
contrastive unsupervised learning method. In the UDL model,
a new backbone and projection head were constructed using
MLP. They also designed and used a loss function with a
stop-gradient strategy to guide learning and training, resulting
in a more robust model. Although this was a good attempt,
research on self-supervised learning with the MIM method in
the field of driver behavior detection is still scarce.

III. METHODS

A. Suitable Self-Supervised Learning Framework

Subsequently, we propose a self-supervised learning method
based on MIM for detecting driver distraction behavior. The
pipeline of the proposed SL-DDBD is shown in Fig. 1. The
proposed method consists of two stages: 1) pretraining and
2) fine-tuning. In the pretraining stage, a large unlabeled data
set is used for self-supervised learning. The MIM method is
employed to mask a part of the input image and train the model
to repredict the masked area of the image. The fine-tuning
stage uses transfer learning to fine-tune the model with a spe-
cific data set. This stage includes precision optimization and
lightweight encoder, as well as data augmentation. The best
masking strategy is determined through experiments. The fine-
tuned model is capable of adapting to downstream tasks with
better adaptability. The self-supervised learning pretraining
framework consists of four main parts.

1) Masking Strategy: This section focuses on how to choose
the masked part of the image and considers the overall
level of masking and the size of the masked image block.
The output is then passed to the next section.

2) Encoder Architecture: A strong encoder with good learn-
ing ability can be used for various visual downstream
tasks. The encoder extracts the latent representation of
the masked image and predicts the original signal of the
masked part through training and learning.

3) Prediction Head: The prediction head is used for the
latent representation to represent the original signal of
the masked patch.

4) Prediction Target: This part specifies the form of the
original signal to be predicted, which can be either the
original pixel values or the transformation of the original
pixels. The loss type is also defined in this part. Cross-
entropy categorization loss and L1 or L2 regression loss
are common choices.

In the masking strategy, a random masking strategy is used.
Image blocks are the basic processing units in the entire system
framework. Using this as a basic unit can facilitate masking
operations at the block level. It is convenient and easy to
implement masking, complete masking, or no masking on the
customizability of the image. For different encoders, there are
different patch sizes. For the Swin Transformer encoder, we

consider patch size dimensions at different resolution levels,
ranging from 4 × 4 to 32 × 32. For the vision Transformer
(ViT) encoder, a default patch size of 32 × 32 is used.

In the prediction head, it is necessary to ensure that the
input to the prediction head is consistent with the output of
the encoder. Once the prerequisites are met, the form and size
of the prediction head can be customized. The prediction head
is then defined to predict the target. In some early works,
an autoencoder was followed with a heavy prediction head.
The use of a complex detection head did not result in bet-
ter performance but rather increased the training cost. In this
paper, considering the application scenario of driver distrac-
tion detection, a simple prediction head is used to accomplish
this task. We use 1 × 1 convolution kernels to implement a
single linear layer to predict pixel values.

In the prediction target, the pixel values are continuous in
the color space, and the original pixels of the masked area are
predicted directly through regression. Each feature vector in
the feature map is mapped back to the original resolution and
is in charge of forecasting the original pixels. This is used to
predict all the pixel values of the input image at all resolutions.

We apply a 1 × 1 linear layer with an output dimension of
3072 = 32×32×3 to the 32×32 down-sampling feature map
made by the Swin Transformer encoder to depict the RGB
values of the 32 × 32 pixels. In order to account for lower
resolution objects, the original image is down-sampled at
multiple dimensions, respectively. These include {32×, 16×,
8×, 4×, 2×}.

Use �1-loss on the masking pixels

L = 1

�(xM)
‖yM − xM‖1 (1)

where, y ∈ R
3HW×1 are the input RGB and predicted values,

M is the collection of masked pixels, and �(·) is the number
of elements.

B. Encoder Architecture

Due to the high requirements of the encoder to extract
the latent feature representation of the masked part of the
image, the encoder needs strong representation learning abil-
ity. Therefore, we consider using the Swin Transformer as the
encoder in the self-supervised learning framework.

Transformer has shone in the field of computer vision after
being transferred from the NLP field, gradually becoming
the main general pillar of computer vision. However, After
ViT, the birth of Swin Transformer was a milestone that
pushed the development of Transformer for computer vision
tasks [49]. Swin Transformer is more suitable for visual tasks,
with two important design points: 1) hierarchical Transformer
and 2) shifted window, resolve large scale differences in visual
entities and the high-pixel resolution of images compared to
text.

The architecture of encoder as shown in Fig. 2. First, the
image is input into the patch partition module for block pro-
cessing. The image is divided into multiple patches of 4 × 4
pixel size. Then, it is flattened in the channel direction. When
an RGB three-channel picture is used as the input, then each
patch has 4 × 4 = 16 pixels, and each pixel has R, G, and B
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Fig. 1. Pipeline of the proposed SL-DDBD.

Fig. 2. Architecture of encoder in the self-supervised learning framework.

three values, so after flattening, it is 16 × 3 = 48. After pro-
cessing by the patch partition, the image shape changes from
[H, W, 3] to [(H/4), (W/4), 48]. The linear embedding layer
linearly transforms each pixel channel, that is, from the orig-
inal 48 to C. C value is defined. After this layer, the image
shape is [(H/4), (W/4), C].

The image is then processed through four stages one by one
and the size changes accordingly. Linear embedding layer is
only in stage 1. Patch merging layers and various numbers of
Swin Transformer blocks make up the final stages. The Swin
Transformer block, as the main working structure, contains
two structures. One is the block using the W-MSA module,

and the other is the block using the SW-MSA module. So
when stacking the Swin Transformer blocks, they are stacked
in pairs.

The patch merging process is shown in Fig. 3. When the
input is a single-channel feature map of 4 × 4 size, patch
merging divides each 2 × 2 neighboring pixel into a patch.
By connecting the pixels in the same location in each patch,
four feature images are created. Concatenating four feature
maps in the depth direction, followed by passing through a
LayerNorm layer. Finally, a fully connected layer performs
linear transformation on the depth direction of the feature map,
reducing the depth of the feature map from C to (C/2). As a
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Fig. 3. Workflow of patch merging.

result, after stages 2, 3, and 4, the shape of the image will be
halved in both width and height while the number of channels
will be doubled.

C. Improved Data Augmentation Strategy

In terms of the data set, it is dangerous to create driving
scenarios that simulate actual driver distraction. Therefore, the
number of real driver distraction data sets is relatively small,
and the quality of the data sets still needs to be improved.
The quantity and diversity of the data set for deep learning
network models often greatly affect the training results of the
model, including the recognition accuracy and robustness. To
tackle this problem, this work presents a data enhancement
strategy that aims to simulate and closely mimic real-world
driving scenarios to increase the quantity and diversity of the
data set.

1) Color Jitter: An effective data augmentation method,
randomly changing the exposure, saturation, and hue of
the images. The aim is to simulate the driving situations
of the driver in the driving room under different lights
and weather conditions. This increases the number and
diversity of training data sets, allowing the model to
learn the differences brought by changes in lighting.

2) Motion Blur: Turns a clearly focused image into a
motion blur effect. Most of the images are captured in
focus for easier feature extraction. In realistic conditions,
the driver’s movements are fast and continuous in the
video of the detection device. Therefore, it is necessary
to consider the phenomenon of motion blur caused by
the driver continuously performing actions.

3) Gaussian Noise: A form of noise whose probability den-
sity function has a Gaussian or normal distribution is
referred to as Gaussian noise. It applies overall noise to
images in order to enhance their diversity and improve
the model’s ability to learn representations.

4) Horizontal Flipping and Random Scaling: Random scal-
ing enhances the model’s ability to detect distracted
driving actions of multiple scales, while horizontal flip-
ping better simulates the driving scenarios of right-side
and left-side vehicles.

5) Cutmix: A random crop box is generated, and a corre-
sponding portion of the A image is cropped. Then the
corresponding ROI in the B image is placed in the crop-
ping area of the A image to form a new image. The loss
is also solved by weighted summing [31]. Employing
hard fusion of two images and concurrently implement-
ing soft fusion strategies for labels, Cutmix ensures
the distribution of the data set remains unaltered. Let
x ∈ R

W×H×C and y represent the training images and
their labels. The merge operation is defined as

x̃ = M � xA + (1 − M) � xB (2)

ỹ = λyA + (1 − λ)yB (3)

where M ∈ {0, 1}W×H represents a binary mask indicat-
ing the deleted and filled positions in the image. 1 is a
binary mask filled with 1, and � represents elementwise
multiplication. λ belongs to the Beta(α, α) distribution,
and if α = 1 is set in the experiment, λ follows a uni-
form distribution between (0, 1). To sample the binary
mask M, it is necessary to sample the bounding box
B = (rx, ry, rw, rh) of the cropping area. Then, sample
xA and xB based on the sampling result for cropping
and padding. In the experiment, the aspect ratio of the
rectangular mask M is proportional to that of the orig-
inal image. The bounding box coordinates are sampled
as follows:

rx ∼ Unif(0, W), rw = W
√

1 − λ (4)

ry ∼ Unif(0, H), rh = H
√

1 − λ. (5)

The cropping area ratio is (rwrh/WH) = 1 − λ, M = 0
in the cropping area B, while the rest of the area has
M = 1.

6) Mixup: A regularization technique that randomly blends
the pixels of two training images to create a new image
that incorporates the labels of both input images [50].
This approach is designed to enhance the diversity
and complexity of the training data set by maximiz-
ing the combination of different contextual information,
thereby improving performance. The calculation formula
is as follows:

x̃ = λxi + (1 − λ)xj (6)

ỹ = λyi + (1 − λ)yj (7)

where λ ∈ [0, 1] follow a Beta(α, α) distribution, α is a
hyperparameter that controls the interpolation strength.
The larger the value of α, the more obvious the interpo-
lation effect. While the smaller the value, the closer the
Mixup enhancement effect tends to be ineffective.

D. Self-Supervised Pretraining

In self-supervised learning, the training process is simi-
lar to a conventional autoencoder. In this work, the input
information is mapped to latent features representation using
a Swin Transformer encoder. Then the liner layer is used as a
prediction head to reconstruct the masked part of the image by
potential feature information. During pretraining, large-scale,
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unlabeled data sets are used for representation training and
learning. In this work used ImagenNet-1K data set, which
contains no labels. The images in the data set are subjected
to a random masking strategy in the self-supervised learn-
ing framework, with patch size set to 32 and ratio set to 0.5.
The inputs are fed into the encoder, which processes both the
visible tokens and the masked tokens.

The encoder’s core working module is the Swin Transformer
block. In the Transformer, the self-attention module is the
basic operational unit, just like the convolutional operation
in a CNN network. The self-attention mechanism in the
Transformer block is able to adaptively model the long-
term dependency relationships among sequence markers. One
type of dependency relationship can only be established by
a particular attention function. MSA aims to learn multiple
dependencies from different representation subspaces. In par-
ticular, the keys, values and queries of the dmodel dimension are
divided linearly into h groups, the attention function is carried
out in all groups concurrently, generate dmodel/h dimension
output values and these values are concatenated and projected.

MSA is expressed as follows:

MultiHead(Q, K, V) = Concat(y1, . . . , yn)W
O (8)

yi = softmax

(

QiKT
i√

dk

)

Vi (9)

where dk = dmodel/h is the average feature area of each atten-
tion head. Qi = XiW

q
i , Ki = XiWk

i , and Vi = Wv
i stand

for the key, query and value. WO is the learnable projec-
tion matrix, and h is the total number of self-attention head.
Wq

i , Wk
i , and Wv

i are parameter matrices, and Xi represents the
feature matrix of the ith head.

E. Transfer Learning With Accuracy Optimization and
Light Weighting

In the field of computer vision, large networks are designed
to provide better service for high-difficulty image classifi-
cation tasks and object detection. However, these deep and
wide networks also drive the progress of various visual down-
stream tasks. Transfer learning is an important part of realizing
downstream tasks [44]. We consider the relationship between
complex networks and the specific application scenario in this
work. In order to achieve better detection results, we also
need to consider the deployment of the model to hardware
and specific engineering applications. Therefore, we perform
lightweight and precision optimization tuning work on the
encoder in the self-supervised learning framework.

The Swin Transformer block is shown in Fig. 4. The image
input enters the first block, where the image needs to go
through a layer norm layer and a W-MSA module, with a skip
connection alongside both processing steps. The image con-
tinues to enter the layer norm layer and MLP module, with
a skip connection alongside this path as well. At this point,
the image has completed processing through the first block
and outputs to the second block. The second block is similar
in overall structure to the first, but instead of using the con-
ventional W-MSA, it uses SW-MSA. The consecutive Swin
Transformer block calculation process is as follows:

Fig. 4. Network of Swin Transformer block.

ẑl = W − MSA
(

LN
(

zl−1
))

+ zl−1 (10)

ẑl = MLP
(

LN
(

ẑl
))

+ ẑl (11)

ẑl+1 = SW − MSA
(

LN
(

zl
))

+ zl (12)

ẑl+1 = MLP
(

LN
(

zl+1
))

+ ẑl+1 (13)

where ẑl and ẑl+1 denote the output features of the (S)W-MSA
module and MLP module of block l, respectively; W-MSA
and SW-MSA represent the multiheaded attention from the
partitioned configuration with regular window and shifted
window.

In the encoder, each image goes through W-MSA and
SW-MSA processing in Swin Transformer block. Therefore, the
number of Swin Transformer blocks must be even. Compared to
large and difficult visual tasks, such as world object classifica-
tion, driver distraction behavior classification is less complex
and has more distinctive features. Although large networks
perform well in recognition of complex classification tasks,
overly complex networks are not the best solution for relatively
simple detection scenarios. In order to reduce the computation
and parameters of the massive encoder, the work changes the
number of stacked Swin Transformer blocks in stages of the
encoder structure. Specifically, the original 18 stacked Swin
Transformer blocks in the third stage are reduced to 6.

The W-MSA and SW-MSA are the main working mod-
ules. Compared to the original MSA, the Swin Transformer
block performs MSA on the window. The MSA, due to its
window-based setting, significantly reduces the computation
cost compared to the original. The computation cost formula
of MSA is as follows:

�(MSA) = 4hwC2 + 2(hw)2C (14)

where � is the computation, h and w are the height and
width of the image respectively, and C is the number of
channels. W-MSA module divides the feature map into a
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TABLE I
DRIVER BEHAVIORS IN THE STATE-FARM DATA SET

TABLE II
DATA SET DIVISION

window with the width and height of M. A feature map
that will get (h/M) × (w/M) windows, and then use the
multiheaded self-attention module for each window. Since the
window’s width and height are M, bring the above formula as
4(MC)2 + 2(M)4C, the final W-MSA calculation is

�(W − MSA) = 4hwC2 + 2M2hwC. (15)

It is similar that the number of heads in the MSA is con-
trollable and the size of the encoder is positively correlated
with the number of heads. The number of heads in the W-
MSA and SW-MSA in the four stages of the encoder are set
differently. The original baseline sets the number of heads to
{4, 8, 16, 32}. However, in the case of very few categories, the
redundant number of heads brings more computational param-
eters and does little to enhance the detection task for fewer
categories. Hence, we adjust the number of detection heads in
each stage to {3, 6, 12, 24}.

IV. EXPERIMENTS

A. Data Sets and Comparison of Each Data Augmentation
Strategy

The data set used in this work is the State Farm data set
from the official Kaggle competition [51]. This data set is a
comprehensive and diverse data set for driver behavior moni-
toring, which includes 26 participants of different races, skin
colors, and genders (13 male and 13 female) from America,

Asia, and Africa. All images in the data set were captured by
a camera fixed in the car dashboard, and all images are RGB
pixels. The data set consists of a total of 22 424 images. As
our initial data set, we randomly divided each class of images
into 80% for training and 20% for testing.

We used the proposed data augmentation strategy to
enhance the data set to improve the generalization ability
and robustness of the proposed detection algorithm model.
After data augmentation, the training images are 81 976
and the test images are 20 000. The specific classification
of distracted driver behavior in the State-Farm data set is
shown in Table I. The basic data set division is shown
in Table II(a), and the division of the expanded data set
using our proposed data augmentation strategy is shown
in Table II(b).

In order to explore the positive effects of the data aug-
mentation strategy proposed in this work on driver distraction
detection, we evaluated the effectiveness of each data augmen-
tation strategy. This exploration aims to discover the potential
connection between different data augmentations and driver
distraction detection. Under the same software and hardware
environment, we set the unified masking strategy of patch size
64, ratio 0.5, and used the improved encoder. We trained seven
models with each of the six data augmentation strategies and
without any data augmentation. The performance of the seven
models was tested on the same data set and the results are
shown in Fig. 5.
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Fig. 5. Comparison of precision of models using different data enhancement strategies.

TABLE III
HARDWARE AND SOFTWARE CONFIGURATION

The NoAug model (without any data augmentation strategy)
has the worst overall performance, with the lowest precision
in multiple categories, including C0, C1, C3, C6, C7, and C8.
The models with Cutmix and Mixup perform the best among
all data augmentation strategies, followed by horizontal flip-
ping and random scaling (HFRS) and motion blur, and finally
Gaussian noise and color jitter. The precision of the models
improved significantly after data augmentation. For example,
the NoAug model has the lowest recognition precision in cate-
gory C8, but the precision in this category for all other models
augmented has improved. The precision of the motion blur and
Gaussian noise models is slightly degraded on C2 and C4,
both of which belong to the “talking on the phone” category.
Motion blur and Gaussian noise affect the images that have
few phone pixels in the image, so there is a small decrease
in precision in both categories. However, the overall accuracy
is still higher than that of NoAug model. Since the Cutmix
and Mixup data augmentation methods remove and overlap
some parts of the image, causing significant changes in the
image. These data augmentation strategies increase the train-
ing difficulty but also improve the model’s feature extraction
from the image, resulting in highly robust and accurate mod-
els after training. Next in line for effectiveness are the HFRS
and motion blur. Like the previous data augmentation strate-
gies, HFRS also makes significant changes to the image by
randomly altering its size and scale, thus enhancing effective

feature extraction. The improvements in precision brought by
Gaussian noise and color jitter are not obvious because they
only induce simple changes to the image by adding noise
and color variations. The proposed data augmentation strat-
egy in this work has a positive effect on the detection of
distracted driver behavior. It enhances the diversity of the data
set, achieves data expansion, and improves model detection
precision.

B. Training Details

This article uses the experimental environment configuration
in Table III to guarantee the effectiveness of model training
and testing. A large-scale self-supervised pretraining is con-
ducted using the ImageNet-1k data set. During pretraining,
the size of input images is adjusted to 192 × 192, and the
window size is adjusted to 6 to adapt to the changed input
image size. In self-supervised pretraining, the training cycle is
800 epochs, and AdamW optimizer with cosine learning rate
adjustment is used. The specific training hyperparameters are
as follows: batch size is 2048, β1 = 0.9, β2 = 0.999, weight
decay is 0.05, and the base learning rate is 8e-4. In the mask-
ing strategy for MIM: the random masking strategy is used,
the masked ratio is 0.5, and the patch size is 32. The predicted
target image size in the linear prediction head is 192 × 192.

In the transfer learning process, we used both the basic ver-
sion and the augmented version of the Sate-Farm data set.
In the hardware and software environment, we used six Intel
Xeon E5-2680 v4 CPUs and an NVIDIA RTX 2080 TI GPU
with a 10-G Memory size. We also used the AdamW optimizer
for transfer learning, with all training periods changed to 110
epochs, the batch size adjusted to 32, the base learning rate
changed to 5e-3, and the weight decay remaining at 0.05. In
the masking strategy for image modeling, we used a random
masking strategy. The masked ratio and patch size were used
as variable parameters in the experiment. The image input size
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Fig. 6. Self-supervised and fully supervised learning visualizations on state farm data set.

was uniformly changed to 224×224, and the window size was
adjusted to 7.

C. Self-Supervised Learning and Masked Image Modeling
Visualization

To investigate the advancement of self-supervised learn-
ing based on MIM, we visualize the self-supervised learning
model and the supervised learning model, and the results
are shown in Fig. 6. We adopt the same encoder structure,
training settings, and data set. We trained a supervised learn-
ing model. The left column shows the original images of
the driver distraction behavior data set, the middle column
shows the visualization effects obtained by the supervised
model, and the right column shows the visualization effects
obtained by the self-supervised model in this work. We use
the grad-cam method [52] for visualization and use gradients
for visualization. We select the LayerNorm layer of the last
Swin Transformer block module in backbone.

The visualization comparison results in the ten types of
driver distraction show that the supervised learning model’s
attention is relatively dispersed in all categories. For exam-
ple, using a cell phone for calling and texting, the supervised

model overall focuses on a large area. At the same time, it
also sometimes needs to pay attention to the situation on the
steering wheel to distinguish distracted behavior. However,
the self-supervised learning model has a very small focus
area and concentrates on the key determining parts of the
driver’s behavior. This is particularly evident in the category of
the driver drinking, where the self-supervised learning model
focuses only on the driver’s hand holding the cup in front. The
same is true for distracted behavior using a phone; where only
the hand and the phone part need to be focused on to classify
the behavior. Overall, the self-supervised model’s attention is
focused on the key parts of the scene objects and has a bet-
ter grasp of the feature information, avoiding the problem of
feature redundancy and excessive computational costs.

D. Comparison of Transfer Learning Optimization

This experiment investigates the impact of self-supervised
masking strategies on detection performance by setting differ-
ent masking details for the baseline. The patch size is the
size of the masked image blocks in the masking strategy.
After being masked, all patches are input into the encoder,
so the patch size directly affects the encoder’s receptive field.
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TABLE IV
MODEL PERFORMANCE WITH DIFFERENT MASKING STRATEGY

A larger patch size provides a larger receptive field but
also contains more irrelevant features. Smaller patches reduce
the receptive field and limit the communication between the
overall image information. These situations affect the fea-
ture learning of the encoder and result in poor classification
performance. The masked ratio is also an important part of
the masking strategy. It affects the degree of masking of the
entire input image. A smaller ratio may cause the encoder to
learn weak representations and make it difficult to restore and
predict the masked image. A larger ratio value leads to too
much masking, making it difficult to train and resulting in
a strong representation ability. Therefore, the ratio value will
greatly impact the model’s performance. The masking strategy
is determined by the patch size and ratio value. In this exper-
iment, we will set different ratio values and patch size values
to verify the impact of the masking strategy on the model’s
detection performance.

In the experiment, set the patch size first, and then adjust the
size of masked ratio value. The specific test results of different
masking strategy models are shown in Table IV.

Acc represents the accuracy, and training time is the train-
ing time under the hardware conditions used. The baseline
model’s mask setting is patch size 32, ratio 0.5. It adopted the
pretrained model setting and encoder structure. The baseline
accuracy is 84.92%. When the patch size is 32, the baseline
is 0.31% higher than the masked ratio set to 0.4, and the
masked ratio set to 0.6 is the highest accuracy of 88.86%
at this size. When the patch size is 64, the masked ratio set
to 0.6 has the highest accuracy of 88.70%. When the patch
size and ratio value are larger, an accuracy of 88.70% can
be achieved. This means that in a situation where the image
is heavily masked and the model training is relatively diffi-
cult, the model has good learning representation ability. Even
when the patch size is 16 and the masked ratio is set to 0.4,
good performance results have been obtained. This means that
in the case of less image masking, the model’s feature learn-
ing for driver distraction detection scenes is favorable, and
favorable recognition results have been obtained. The accu-
racy reached 89.33% when the masked ratio was 0.5. This
is the highest accuracy obtained from the masking strategy
experiment before optimization, compared to the baseline, it
increased by 4.41%. The training time of all models fluctuated
between 8:34:21 to 8:57:49. The longest training time did not

Fig. 7. Comparison of the accuracy of the baseline and improved models
with a fixed patch size of 16 and different ratio values.

exceed 9 h. Therefore, overall, the change in patch size and
masked ratio has a very small impact on the training cost of
the entire model.

The experiment in this section will verify the impact of
optimization in transfer learning on the model’s detection
performance. The optimized model will also experiment with
different masking strategies. Figs. 7, 8, and 9 are the compar-
ison results of the optimized model and the baseline in the
case of patch size 16, 32, and 64, respectively. Each figure
shows the accuracy of the two models under the same mask-
ing strategy, with the same patch size, presented in the form
of a bar graph, making it more intuitive to show the accuracy
improvement brought by the optimization work.

In Fig. 7, the patch size is 16 and all improved models
increase accuracy by 4.46%, 5.07%, and 3.47% compared to
the original model for each masked ratio. The original model
has the lowest accuracy of 87.05% when masked ratio is
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Fig. 8. Comparison of the accuracy of the baseline and improved models
with a fixed patch size of 32 and different ratio values.

0.6. However, the optimized model still maintains an accu-
racy above 90% under this setting. At the same patch size
setting, the optimized model reached an accuracy of 94.40%
when masked ratio is 0.5, which is the highest accuracy under
this setting.

The improved model in Fig. 8 shows an increase in accuracy
of 7.83%, 6.69%, and 4.09%, respectively, compared to the
original model. The baseline model has an accuracy of only
over 84% when the masked ratio is 0.4 and 0.5. However,
after the model is optimized, the accuracy improvement is
significant, all reaching above 91%. Fig. 9 also shows that
the performance of the improved model is still better than the
original model. Especially when the masked ratio is 0.5, the
accuracy of the improved model reaches 95.13%, which is
the highest recognition accuracy among all masking strategies.
Compared to the original model under the same strategy, it
has increased by 8.45%, and compared to the baseline, it has
increased by 10.21%. In all the above model comparisons, the
performance of all improved models is better than the original
model. The separate validation on various masking strategies
indicates that the optimization work on accuracy in transfer
learning is effective.

The optimized model experimented with different masking
strategies. The results showed that the model performed best
with a masking strategy of patch size of 64 and masked ratio
of 0.5 after transfer learning optimization. Therefore, this arti-
cle uses this masking strategy to train the augmented data set.
The final model obtained is SL-DDBD. In this section, we will
compare the accuracy of the baseline, the optimized model
trained with original data (Improved), the model trained with
the ViT as the encoder, and the Improved+DA model at dif-
ferent epochs, as shown in Fig. 10. The Improved+DA model
has the fastest convergence speed and the second is the ViT
model. However, the accuracy of the ViT model at the end is

Fig. 9. Comparison of the accuracy of the baseline and improved models
with a fixed patch size of 64 and different ratio values.

Fig. 10. Accuracy rate comparison of different models.

the lowest, only 74.35%. It is obvious that the Improved+DA
model has reached a high accuracy of 78% at epoch 10. At
the same epoch, the accuracy of other models is basically kept
between 15%–25%. The accuracy of the Improved model is
higher than the baseline at all epochs, which again proves the
improvement of the optimization work on the model accuracy.
The Improved+DA model not only converges quickly but also
outperforms other models at each epoch. The accuracy of the
model is 99.60%.

At the same time, in this experiment, the baseline model
and our proposed model SL-DDBD are compared. The
performance of the two models is compared in eight metrics:
1) Acc; 2) Ws; 3) GFLOPS; 4) Params; 5) FPS; 6) precision;
7) recall; and 8) F1-score. As shown in Table V, Fig. 11,
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TABLE V
COMPREHENSIVE PERFORMANCE OF SL-DDBD AND BASELINE

Fig. 11. Heat map comparison of precision for the baseline model and
SL-DDBD.

Fig. 12. Heat map comparison of recall for the baseline model and SL-
DDBD.

12, and 13. The confusion matrix of the SL-DDBD model
is shown in Fig. 14. After the optimization work, our model
not only significantly improved the accuracy but also reduced
the overall parameters and computation.

The accuracy of the proposed model SL-DDBD reaches
the highest level of 99.60%, which is an improvement of
14.68% compared to the baseline model’s accuracy of 84.92%.
SL-DDBD has shown excellent results in metrics of F1-score,
precision, and recall. Especially for categories C8 and C9,
the original baseline recognition accuracy was low. However,
SL-DDBD significantly improved this situation, maintaining
high values for precision and F1-score across all categories.
The FPS of the model has also improved after lightweight
optimization, from the original 29 FPS to 56 FPS, which is
nearly a twofold increase. This not only ensures fast detec-
tion but also meets the real-time monitoring requirements. The

Fig. 13. Heat map comparison of F1-scores for the baseline model and
SL-DDBD.

Fig. 14. Confusion matrix of SL-DDBD.

detection performance of the model has reached an acceptable
level in terms of both accuracy and detection speed.

Since the self-supervised learning framework was orig-
inally designed to solve large-scale computer vision tasks
and used a common encoder structure, the model itself is
not very lightweight in terms of parameters and weight file
size. However, through lightweight optimization in the trans-
fer learning section, the parameters of the model were reduced
from 86.7 million to 27.5 million, a decrease of 68.2%.
The size of the weight file after training was reduced from
994.7 MB to 316.3 MB. GFLOPS decreased from 15.26
to 4.49, which greatly reduces the difficulty in engineering
deployment and hardware requirements.
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TABLE VI
COMPARISON RESULTS WITH SUPERVISED MODELS

In the confusion matrix, the overall classification of the
model is excellent, but it also shows a small number of
misclassifications. For example, C0 “Normal driving” and C9
“Talking to passenger” are confused with each other. The main
reason for the classification error is the high similarity of the
images between the two categories. Drivers occasionally turn
their heads during safe driving to observe the front view or
to look at the rearview mirror. However, this may be mis-
judged as talking with passengers. Similarly, in some images
of C9 “Talking to passenger,” drivers do not obviously turn
their heads to talk to passengers on the right, which is also
easily misjudged as “Normal driving.”

E. Comparison With Previous Results

To validate the detection performance of the proposed
method, we compared our best model, the “SL-DDBD” model,
with previous state-of-the-art supervised and unsupervised
learning methods.

The comparison results between the proposed method and
supervised learning models are shown in Table VI. The main
evaluation metrics are accuracy and parameters, which are
used to compare and analyze the model’s accuracy and size.

Literature [53] and [55] both use earlier CNN networks and
improve the accuracy through some improvements. Their accu-
racy has not reached a high value. At the same time, due to the
early network, the feature learning ability is poor, which leads
to larger network parameters. Models like Ensemble VGG-16
and VGG-16 [55] have already exceeded 140 million in terms
of parameters, but the accuracy is still a low value of 92.6%.
The method in literature [58] is a fusion of multiple detec-
tion models, with parameters reaching 214.3 million, and the
accuracy is still 97%. Similarly, the HCF [54] method, which
is based on the fusion of multicategory CNN models, reduces
the parameters to the lowest value of 72.3 million, but the
accuracy is still not high. Recently, the D-HCNN [26] method
has achieved high accuracy, exceeding 99%, by decreasing the
convolutional kernel size to lightweight. Due to the large data
set of self-supervised training and the encoder of the Swin
Transformer, the parameters of the basic model are larger com-
pared to CNN models. However, the proposed method in our

work is based on self-supervised learning, which is a particular
advantage. The cost of supervised learning training will be sig-
nificantly reduced, and it has strong generalization capabilities.
Transfer learning only requires a small data set and per-
forms well in more detailed downstream tasks. Moreover, we
have conducted lightweight work and verified its effectiveness
through experiments. Finally, the model’s parameters can be
reduced to 27.5 million while achieving a recognition accuracy
of 99.6%. Compared to most of the supervised learning-based
CNN models in the table, the recognition accuracy is higher
and the parameters are smaller.

Currently, there are only a few unsupervised learning
methods available in the field of driver distraction behavior
recognition. This indicates the need for further exploration and
research in driver behavior detection. This article compares the
proposed method with recent unsupervised learning methods
for driver distraction behavior detection [48], and presents the
comparison results in Table VII.

The SimCLR is a classic unsupervised learning method,
with a ResNet50 backbone achieving 94.32% accuracy. The
Simsiam method, also with a ResNet50 backbone, has an accu-
racy of 86.29%. Through the process of model refinement,
our approach has surpassed the accuracy of both Simsiam
and SimCLR, achieving a high-recognition rate of 95.13%.
The baseline model’s recognition performance is only 1.37%
lower than that of Simsiam. However, it is worth noting that,
unlike the models presented in this work which were trained
for 110 epochs, all other models underwent a significantly
larger number of training epochs, reaching up to 400. In the
SimCLR unsupervised learning method, a larger batch size
provides more negative examples to facilitate convergence.
Longer training epochs also provide more negative examples
and can significantly improve results. All models in this work
have only 110 training epochs. MIM is a new “prediction” type
of the self-supervised learning method. This method has good
representation learning ability supported by pretraining, reduc-
ing the cost of transfer learning for driver distraction behavior
detection. The UDL model proposed in [48] is an improvement
on the Simsiam structure and is also a “constructive” category
unsupervised learning method like SimCLR. With the main
network using RepMLP-Res50, the final accuracy of the UDL
model is 98.61%. The accuracy of the SL-DDBD model in
this article is 99.60%, which is higher than the recognition
accuracy of the all above models.

V. CONCLUSION

This article explores the introduction of the MIM self-
supervised learning method in the task of driver distraction
behavior detection. Image masking strategy is used for pre-
training on a large number of unlabeled data sets. In order to
better integrate unsupervised learning and downstream tasks,
transfer learning is carried out on the driver distraction behav-
ior data set. Lightweighting and accuracy optimization work
has been done in transfer learning.

1) The original encoder was improved through a recon-
figuration of the number of Swin Transformer blocks in
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TABLE VII
COMPARISON RESULTS WITH UNSUPERVISED MODELS

stage 3. The task detection accuracy was improved while
reducing the complexity of the encoder network.

2) For each stage of the encoder, a new distribution of the
number of W-MSA and SW-MSA detection heads was
made. The number of feature transfers was reduced and
attention was increased on key feature information.

3) In transfer learning, the impact of MIM strategy on
downstream tasks was considered and a comprehensive
comparison experiment was designed. The best masking
strategy was selected.

4) We used a multiclass data augmentation strategy to
simulate real-world scenarios to expand data set. This
further improved the model’s generalization ability in
complex scenarios. SL-DDBD achieves 99.60% accu-
racy on the large-scale driver distraction behavior data
set State-Farm.

In future work, interesting work is to try using multisource
information fusion methods for driver distraction behavior
detection. we will predict the driver’s eye focus position. The
predicted eye focus position and the action behavior recog-
nition results are combined to achieve more accurate driver
distraction recognition. In addition, we will consider using
model pruning methods to further do lightweight research
on the self-supervised driver distraction behavior detection
model. The model quantifies the weights during transfer learn-
ing training, and then deletes low-weight parts according to
certain standards. Deploying the model on mobile devices for
fast and real-time detection of driver distraction.
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